国产人妖的免-国产人妖视频一区二区-国产人妖兮-国产人妖系列在线精品-国产人妖在线观看-国产人妖在线观看网站

首頁(yè) > 職業(yè)資格  > 

《二次根式的乘除法》教案設(shè)計(jì)

2023-04-29   來源:萬能知識(shí)網(wǎng)

《二次根式的乘除法》教案設(shè)計(jì)范文(通用8篇)


(資料圖片)

在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,總不可避免地需要編寫教案,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。那么寫教案需要注意哪些問題呢?下面是小編為大家整理的《二次根式的乘除法》教案設(shè)計(jì),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

《二次根式的乘除法》教案設(shè)計(jì) 篇1

【教學(xué)目標(biāo)】

1.運(yùn)用法則

進(jìn)行二次根式的乘除運(yùn)算;

2.會(huì)用公式

化簡(jiǎn)二次根式。

【教學(xué)重點(diǎn)】

運(yùn)用

進(jìn)行化簡(jiǎn)或計(jì)算

【教學(xué)難點(diǎn)】

經(jīng)歷二次根式的乘除法則的探究過程

【教學(xué)過程】

一、情境創(chuàng)設(shè):

1.復(fù)習(xí)舊知:什么是二次根式?已學(xué)過二次根式的哪些性質(zhì)?

2.計(jì)算:

二、探索活動(dòng):

1.學(xué)生計(jì)算;

2.觀察上式及其運(yùn)算結(jié)果,看看其中有什么規(guī)律?

3.概括:

得出:二次根式相乘,實(shí)際上就是把被開方數(shù)相乘,而根號(hào)不變。

將上面的公式逆向運(yùn)用可得:

積的算術(shù)平方根,等于積中各因式的算術(shù)平方根的積。

三、例題講解:

1.計(jì)算:

2.化簡(jiǎn):

小結(jié):如何化簡(jiǎn)二次根式?

1.(關(guān)鍵)將被開方數(shù)因式分解或因數(shù)分解,使之出現(xiàn)“完全平方數(shù)”或“完全平方式”;

2.P62結(jié)果中,被開方數(shù)應(yīng)不含能開得盡方的因數(shù)或因式。

四、課堂練習(xí):

(一).P62練習(xí)1、2

其中2中(5)

注意:

不是積的形式,要因數(shù)分解為36×16=242

(二).P673計(jì)算(2)(4)

補(bǔ)充練習(xí):

1.(x>0,y>0)

2.拓展與提高:

化簡(jiǎn):1).(a>0,b>0)

2).(y

2.若,求m的取值范圍。

☆3.已知:,求的值。

五、本課小結(jié)與作業(yè):

小結(jié):二次根式的乘法法則

作業(yè):

1).課課練P9-10

2).補(bǔ)充習(xí)題

《二次根式的乘除法》教案設(shè)計(jì) 篇2

教材分析:

本節(jié)內(nèi)容出自九年級(jí)數(shù)學(xué)上冊(cè)第二十一章第三節(jié)的第一課時(shí),本節(jié)在研究最簡(jiǎn)二次根式和二次根式的乘除的基礎(chǔ)上,來學(xué)習(xí)二次根式的加減運(yùn)算法則和進(jìn)一步完善二次根式的化簡(jiǎn)。本小節(jié)重點(diǎn)是二次根式的加減運(yùn)算,教材從一個(gè)實(shí)際問題引出二次根式的加減運(yùn)算,使學(xué)生感到研究二次根式的加減運(yùn)算是解決實(shí)際問題的需要。通過探索二次根式加減運(yùn)算,并用其解決一些實(shí)際問題,來提高我們用數(shù)學(xué)解決實(shí)際問題的意識(shí)和能力。另外,通過本小節(jié)學(xué)習(xí)為后面學(xué)生熟練進(jìn)行二次根式的加減運(yùn)算以及加、減、乘、除混合運(yùn)算打下了鋪墊。

學(xué)生分析:

本節(jié)課的內(nèi)容是知識(shí)的延續(xù)和創(chuàng)新,學(xué)生積極主動(dòng)的投入討論、交流、建構(gòu)中,自主探索、動(dòng)手操作、協(xié)作交流,全班學(xué)生具有較扎實(shí)的知識(shí)和創(chuàng)新能力,通過自學(xué)、小組討論大部分學(xué)生能夠達(dá)到教學(xué)目標(biāo),少部分學(xué)生有困難,基礎(chǔ)差、自學(xué)能力差,因此要提供賞識(shí)性評(píng)價(jià)教學(xué)策略,給予個(gè)別關(guān)照、心理暗示以及適當(dāng)?shù)木窦?lì),克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的學(xué)習(xí)任務(wù)。

設(shè)計(jì)理念:

新課程有效課堂教學(xué)明確倡導(dǎo),學(xué)生是學(xué)習(xí)的主人,在學(xué)生自學(xué)文本的基礎(chǔ)上動(dòng)手實(shí)踐、自主探究、合作交流,來倡導(dǎo)新的學(xué)習(xí)觀,讓他們完成二次根式加減知識(shí)研究。教師從過去知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生的自主性、探究性、合作性學(xué)習(xí)活動(dòng)的設(shè)計(jì)者和組織者,與學(xué)生零距離接觸共同探究。在教學(xué)過程中教師設(shè)置開放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問題情境,使學(xué)生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學(xué)”變成“我要學(xué)”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略,并根據(jù)活動(dòng)中示范和指導(dǎo)培養(yǎng)學(xué)生大膽闡述并討論觀點(diǎn),說明所獲討論的有效性,并對(duì)推論進(jìn)行評(píng)價(jià)。從而營(yíng)造一個(gè)接納的、支持的、寬容的良好氛圍進(jìn)行學(xué)習(xí)。

教學(xué)目標(biāo)知識(shí)與技能目標(biāo):

會(huì)化簡(jiǎn)二次根式,了解同類二次根式的概念,會(huì)進(jìn)行簡(jiǎn)單的二次根式的加減法;通過加減運(yùn)算解決生活的實(shí)際問題。

過程與方法目標(biāo):

通過類比整式加減法運(yùn)算體驗(yàn)二次根式加減法運(yùn)算的過程;學(xué)生經(jīng)歷由實(shí)際問題引入數(shù)學(xué)問題的過程,發(fā)展學(xué)生的抽象概括能力。

情感態(tài)度與價(jià)值觀:

通過對(duì)二次根式加減法的探究,激發(fā)學(xué)生的探索熱情,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,使他們體驗(yàn)到成功的樂趣

重點(diǎn)、難點(diǎn):重點(diǎn):

合并被開放數(shù)相同的同類二次根式,會(huì)進(jìn)行簡(jiǎn)單的二次根式的加減法。

難點(diǎn):

二次根式加減法的實(shí)際應(yīng)用。

關(guān)鍵問題:

了解同類二次根式的概念,合并同類二次根式,會(huì)進(jìn)行二次根式的加減法。

教學(xué)方法:.

1.引導(dǎo)發(fā)現(xiàn)法:在教師的啟發(fā)引導(dǎo)下,鼓勵(lì)學(xué)生積極參與,與實(shí)際問題相結(jié)合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學(xué)生自主探索,合作學(xué)習(xí),歸納結(jié)論,掌握規(guī)律。

2.類比法:由實(shí)際問題導(dǎo)入二次根式加減運(yùn)算;類比合并同類項(xiàng)合并同類二次根式。

3.嘗試訓(xùn)練法:通過學(xué)生嘗試,教師針對(duì)個(gè)別問題進(jìn)行點(diǎn)撥指導(dǎo),實(shí)現(xiàn)全優(yōu)的教育效果

《二次根式的乘除法》教案設(shè)計(jì) 篇3

教學(xué)目的

1.使學(xué)生掌握最簡(jiǎn)二次根式的定義,并會(huì)應(yīng)用此定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式;

2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡(jiǎn)二次根式。

教學(xué)重點(diǎn)

最簡(jiǎn)二次根式的定義。

教學(xué)難點(diǎn)

一個(gè)二次根式化成最簡(jiǎn)二次根式的方法。

教學(xué)過程

一、復(fù)習(xí)引入

1.把下列各根式化簡(jiǎn),并說出化簡(jiǎn)的根據(jù):

2.引導(dǎo)學(xué)生觀察考慮:

化簡(jiǎn)前后的根式,被開方數(shù)有什么不同?

化簡(jiǎn)前的被開方數(shù)有分?jǐn)?shù),分式;化簡(jiǎn)后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號(hào)外。

3.啟發(fā)學(xué)生回答:

二次根式,請(qǐng)同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡(jiǎn)二次根式?

二、講解新課

1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡(jiǎn)二次根式定義:

滿足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:

(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

(2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

最簡(jiǎn)二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

2.練習(xí):

下列各根式是否為最簡(jiǎn)二次根式,不是最簡(jiǎn)二次根式的說明原因:

3.例題:

例1把下列各式化成最簡(jiǎn)二次根式:

例2把下列各式化成最簡(jiǎn)二次根式:

4.總結(jié)

把二次根式化成最簡(jiǎn)二次根式的根據(jù)是什么?應(yīng)用了什么方法?

當(dāng)被開方數(shù)為整數(shù)或整式時(shí),把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。

當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡(jiǎn)。

三、鞏固練習(xí)

1.把下列各式化成最簡(jiǎn)二次根式:

2.判斷下列各根式,哪些是最簡(jiǎn)二次根式?哪些不是最簡(jiǎn)二次根式?如果不是,把它化成最簡(jiǎn)二次根式。

四、小結(jié)

本節(jié)課學(xué)習(xí)了最簡(jiǎn)二次根式的定義及化簡(jiǎn)二次根式的方法。同學(xué)們掌握用最簡(jiǎn)二次根式的定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個(gè)根式化成最簡(jiǎn)二次根式,特別注意當(dāng)被開方數(shù)為多項(xiàng)式時(shí)要進(jìn)行因式分解,被開方數(shù)為兩個(gè)分?jǐn)?shù)的和則要先通分,再化簡(jiǎn)。

五、布置作業(yè)

下列各式化成最簡(jiǎn)二次根式:

《二次根式的乘除法》教案設(shè)計(jì) 篇4

一、內(nèi)容和內(nèi)容解析

1.內(nèi)容

二次根式的概念

2.內(nèi)容解析

本節(jié)課是在學(xué)生學(xué)習(xí)了平方根、算術(shù)平方根、立方根的概念,會(huì)用根號(hào)表示數(shù)的平方根、立方根,知道開方與乘方互為逆運(yùn)算的基礎(chǔ)上,來學(xué)習(xí)二次根式的概念。它不僅是對(duì)前面所學(xué)知識(shí)的綜合應(yīng)用,也為后面學(xué)習(xí)二次根式的性質(zhì)和四則運(yùn)算打基礎(chǔ)。

教材先設(shè)置了三個(gè)實(shí)際問題,這些問題的結(jié)果都可以表示成二次根式的形式,它們都表示一些正數(shù)的算術(shù)平方根,由此引出二次根式的定義。再通過例1討論了二次根式中被開方數(shù)字母的取值范圍的問題,加深學(xué)生對(duì)二次根式的定義的理解。

本節(jié)課的教學(xué)重點(diǎn)是:了解二次根式的概念;

二、目標(biāo)和目標(biāo)解析

1.教學(xué)目的

(1)體會(huì)研究二次根式是實(shí)際的需要

(2)了解二次根式的概念

2.教學(xué)目標(biāo)解析

(1)學(xué)生能用二次根式表示實(shí)際問題中的數(shù)量和數(shù)量關(guān)系,體會(huì)研究二次根式的必要性。

(2)學(xué)生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,知道被開方數(shù)必須是非負(fù)數(shù)的理由,知道二次根式本身是一個(gè)非負(fù)數(shù),會(huì)求二次根式中被開方數(shù)字母的取值范圍。

三、教學(xué)問題診斷分析

對(duì)于二次根式的定義,應(yīng)側(cè)重讓學(xué)生理解“的雙重非負(fù)性,”即被開方數(shù)≥0是非負(fù)數(shù),的算術(shù)平方根≥0也是非負(fù)數(shù)。教學(xué)時(shí)注意引導(dǎo)學(xué)生回憶在實(shí)數(shù)一章所學(xué)習(xí)的有關(guān)平方根的意義和特征,幫助學(xué)生理解這一要求,從而讓學(xué)生得出二次根式成立的條件,并運(yùn)用被開方數(shù)是非負(fù)數(shù)這一條件進(jìn)行二次根式有意義的判斷。

本節(jié)課的教學(xué)難點(diǎn)為:理解二次根式的雙重非負(fù)性。

四、教學(xué)過程設(shè)計(jì)

1.創(chuàng)設(shè)情境,提出問題

問題1你能用帶有根號(hào)的的式子填空嗎?

(1)面積為3的正方形的邊長(zhǎng)為_______,面積為S的正方形的邊長(zhǎng)為_______

(2)一個(gè)長(zhǎng)方形圍欄,長(zhǎng)是寬的2倍,面積為130?,則它的寬為______

(3)一個(gè)物體從高處自由落下,落到地面所用的時(shí)間t(單位:s)與開始落下的高度h(單位:)滿足關(guān)系h=5t?,如果用含有h的式子表示t,則t=_____

師生活動(dòng):學(xué)生獨(dú)立完成上述問題,用算術(shù)平方根表示結(jié)果,教師進(jìn)行適當(dāng)引導(dǎo)和評(píng)價(jià)

【設(shè)計(jì)意圖】讓學(xué)生在填空過程中初步感知二次根式與實(shí)際生活的緊密聯(lián)系,體會(huì)研究二次根式的必要性

問題2上面得到的式子,,分別表示什么意義?它們有什么共同特征?

師生活動(dòng):教師引導(dǎo)學(xué)生說出各式的意義,概括它們的共同特征:都表示一個(gè)非負(fù)數(shù)(包括字母或式子表示的非負(fù)數(shù))的算術(shù)平方根

【設(shè)計(jì)意圖】為概括二次根式的概念作鋪墊

2.抽象概括,形成概念

問題3你能用一個(gè)式子表示一個(gè)非負(fù)數(shù)的算術(shù)平方根嗎?

師生活動(dòng):學(xué)生小組討論,全班交流。教師由此給出二次根式的定義:一般地,我們把形如(a≥0)的式子叫做二次根式,“”稱為二次根號(hào).

【設(shè)計(jì)意圖】讓學(xué)生體會(huì)由特殊到一般的過程,培養(yǎng)學(xué)生的概括能力

追問:在二次根式的概念中,為什么要強(qiáng)調(diào)“a≥0”

師生活動(dòng):教師引導(dǎo)學(xué)生討論,知道二次根式被開方數(shù)必須是非負(fù)數(shù)的理由

【設(shè)計(jì)意圖】進(jìn)一步加深學(xué)生對(duì)二次根式被開方數(shù)必須是非負(fù)數(shù)的理解

3.辨析概念,應(yīng)用鞏固

例1當(dāng)時(shí)怎樣的實(shí)數(shù)時(shí),在實(shí)數(shù)范圍內(nèi)有意義?

師生活動(dòng):引導(dǎo)學(xué)生從概念出發(fā)進(jìn)行思考,鞏固學(xué)生對(duì)二次根式的被開方數(shù)為非負(fù)數(shù)的理解

例2當(dāng)是怎樣的實(shí)數(shù)時(shí),在實(shí)數(shù)范圍內(nèi)有意義?呢?

師生活動(dòng):先讓學(xué)生獨(dú)立思考,再追問

【設(shè)計(jì)意圖】在辨析中,加深學(xué)生對(duì)二次根式被開方數(shù)為非負(fù)數(shù)的理解

問題4你能比較與0的大小嗎?

師生活動(dòng):通過分和這兩種情況的討論,比較與0的大小,引導(dǎo)學(xué)生得出≥0的結(jié)論,強(qiáng)化學(xué)生對(duì)二次根式本身為非負(fù)數(shù)的理解,

【設(shè)計(jì)意圖】通過這一活動(dòng)的設(shè)計(jì),提高學(xué)生對(duì)所學(xué)知識(shí)的遷移能力和應(yīng)用意識(shí);培養(yǎng)學(xué)生分類討論和歸納概括的能力

4.綜合運(yùn)用,鞏固提高

練習(xí)1完成教科書第3頁(yè)的練習(xí)

練習(xí)2當(dāng)x是什么實(shí)數(shù)時(shí),下列各式有意義

(1);(2);(3);(4)

【設(shè)計(jì)意圖】辨析二次根式的概念,確定二次根式有意義的條件

【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維

5.總結(jié)反思

教師和學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請(qǐng)學(xué)生回答以下問題

(1)本節(jié)課你學(xué)到了哪一類新的式子?

(2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

(3)二次根式與算術(shù)平方根有什么關(guān)系?

師生活動(dòng):教師引導(dǎo),學(xué)生小結(jié)

【設(shè)計(jì)意圖】:學(xué)生共同總結(jié),互相取長(zhǎng)補(bǔ)短,再一次突出本節(jié)課的學(xué)習(xí)重點(diǎn),掌握解題方法

6.布置作業(yè):

教科書習(xí)題16.1第1,3,5,7,10題。

五、目標(biāo)檢測(cè)設(shè)計(jì)

1.下列各式中,一定是二次根式的是()

A.B.C.D.

【設(shè)計(jì)意圖】考查對(duì)二次根式概念的了解,要特別注意被開方數(shù)為非負(fù)數(shù)

2.當(dāng)時(shí),二次根式無意義.

【設(shè)計(jì)意圖】考查二次根式無意義的條件,即被開方數(shù)小于0,要注意審題

3.當(dāng)時(shí),二次根式有最小值,其最小值是.

【設(shè)計(jì)意圖】本題主要考查二次根式被開方數(shù)是非負(fù)數(shù)的靈活運(yùn)用

4.對(duì)于,小紅根據(jù)被開方數(shù)是非負(fù)數(shù),得出的取值范圍是≥。小慧認(rèn)為還應(yīng)考慮分母不為0的情況。你認(rèn)為小慧的想法正確嗎?試求出的取值范圍.

【設(shè)計(jì)意圖】考查二次根式的被開方數(shù)為非負(fù)數(shù)和一個(gè)式子的分母不能為0,解題時(shí)需要綜合考慮。

《二次根式的乘除法》教案設(shè)計(jì) 篇5

一、學(xué)習(xí)目標(biāo):

1.多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則及其應(yīng)用.

2.多項(xiàng)式除以單項(xiàng)式的運(yùn)算算理.

二、重點(diǎn)難點(diǎn):

重點(diǎn):多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則及其應(yīng)用

難點(diǎn):探索多項(xiàng)式與單項(xiàng)式相除的運(yùn)算法則的過程

三、合作學(xué)習(xí):

(一)回顧單項(xiàng)式除以單項(xiàng)式法則

(二)學(xué)生動(dòng)手,探究新課

1.計(jì)算下列各式:

(1)(am+bm)÷m(2)(a2+ab)÷a(3)(4x2y+2xy2)÷2xy.

2.提問:①說說你是怎樣計(jì)算的②還有什么發(fā)現(xiàn)嗎?

(三)總結(jié)法則

1.多項(xiàng)式除以單項(xiàng)式:先把這個(gè)多項(xiàng)式的每一項(xiàng)除以___________,再把所得的商______

2.本質(zhì):把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成______________

四、精講精練

例:(1)(12a3-6a2+3a)÷3a;(2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

(3)[(x+y)2-y(2x+y)-8x]÷2x(4)(-6a3b3+8a2b4+10a2b3+2ab2)÷(-2ab2)

隨堂練習(xí):教科書練習(xí)

五、小結(jié)

1、單項(xiàng)式的除法法則

2、應(yīng)用單項(xiàng)式除法法則應(yīng)注意:

A、系數(shù)先相除,把所得的結(jié)果作為商的系數(shù),運(yùn)算過程中注意單項(xiàng)式的系數(shù)飽含它前面的符號(hào)

B、把同底數(shù)冪相除,所得結(jié)果作為商的因式,由于目前只研究整除的.情況,所以被除式中某一字母的指數(shù)不小于除式中同一字母的指數(shù);

C、被除式單獨(dú)有的字母及其指數(shù),作為商的一個(gè)因式,不要遺漏;

D、要注意運(yùn)算順序,有乘方要先做乘方,有括號(hào)先算括號(hào)里的,同級(jí)運(yùn)算從左到右的順序進(jìn)行。

E、多項(xiàng)式除以單項(xiàng)式法則

第三十四學(xué)時(shí):14.2.1平方差公式

一、學(xué)習(xí)目標(biāo):

1.經(jīng)歷探索平方差公式的過程。

2.會(huì)推導(dǎo)平方差公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的運(yùn)算。

二、重點(diǎn)難點(diǎn)

重點(diǎn):平方差公式的推導(dǎo)和應(yīng)用

難點(diǎn):理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式。

三、合作學(xué)習(xí)

你能用簡(jiǎn)便方法計(jì)算下列各題嗎?

(1)2001×1999(2)998×1002

導(dǎo)入新課:計(jì)算下列多項(xiàng)式的積。

(1)(x+1)(x-1)(2)(m+2)(m-2)

(3)(2x+1)(2x-1)(4)(x+5y)(x-5y)

結(jié)論:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差。

即:(a+b)(a-b)=a2-b2

四、精講精練

例1:運(yùn)用平方差公式計(jì)算:

(1)(3x+2)(3x-2)(2)(b+2a)(2a-b)(3)(-x+2y)(-x-2y)

例2:計(jì)算:

(1)102×98(2)(y+2)(y-2)-(y-1)(y+5)

隨堂練習(xí)

《二次根式的乘除法》教案設(shè)計(jì) 篇6

教案

教法:

1、引導(dǎo)發(fā)現(xiàn)法:通過教師精心設(shè)計(jì)的問題鏈,使學(xué)生產(chǎn)生認(rèn)知沖突,感悟新知,建立分式的模型,引導(dǎo)學(xué)生觀察、類比、參與問題討論,使感性認(rèn)識(shí)上升為理性認(rèn)識(shí),充分體現(xiàn)了教師主導(dǎo)和學(xué)生主體的作用,對(duì)實(shí)現(xiàn)教學(xué)目標(biāo)起了重要的作用;

2、講練結(jié)合法:在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與平方根進(jìn)行類比,獲得解決問題的方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。

學(xué)法:

1、類比的方法通過觀察、類比,使學(xué)生感悟二次根式的模型,形成有效的學(xué)習(xí)策略。

2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗(yàn)一定的閱讀方法,提高閱讀能力。

3、分組討論法將自己的意見在小組內(nèi)交換,達(dá)到取長(zhǎng)補(bǔ)短,體驗(yàn)學(xué)習(xí)活動(dòng)中的交流與合作。

4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識(shí);利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他檢,提高學(xué)生的素質(zhì)。

知識(shí)點(diǎn)

上節(jié)課我們認(rèn)識(shí)了什么是二次根式,那么二次根式有什么性質(zhì)呢?本節(jié)課我們一起來學(xué)習(xí)。

二、展示目標(biāo),自主學(xué)習(xí):

自學(xué)指導(dǎo):認(rèn)真閱讀課本第3頁(yè)——4頁(yè)內(nèi)容,完成下列任務(wù):

1、請(qǐng)比較與0的大小,你得到的結(jié)論是:________________________。

2、完成3頁(yè)“探究”中的填空,你得到的結(jié)論是____________________。

3、看例2是怎樣利用性質(zhì)進(jìn)行計(jì)算的。

4、完成4頁(yè)“探究”中的填空,你得到的結(jié)論是:____________________。

5、看懂例3,有困難可與同伴交流或問老師。

課時(shí)作業(yè)

教師節(jié)要到了,為了表示對(duì)老師的敬意,小明做了兩張大小不同的正方形壁畫準(zhǔn)備送給老師,其中一張面積為800cm2,另一張面積為450cm2,他想如果再用金彩帶把壁畫的邊鑲上會(huì)更漂亮,他現(xiàn)在有1.2m長(zhǎng)的金彩帶,請(qǐng)你幫助算一算,他的金彩帶夠用嗎?如果不夠,還需買多長(zhǎng)的金彩帶?(≈1.414,結(jié)果保留整數(shù))

《二次根式的乘除法》教案設(shè)計(jì) 篇7

教學(xué)目標(biāo)

1.使學(xué)生進(jìn)一步理解二次根式的意義及基本性質(zhì),并能熟練地化簡(jiǎn)含二次根式的式子;

2.熟練地進(jìn)行二次根式的加、減、乘、除混合運(yùn)算

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):含二次根式的式子的混合運(yùn)算

難點(diǎn):綜合運(yùn)用二次根式的性質(zhì)及運(yùn)算法則化簡(jiǎn)和計(jì)算含二次根式的式子

教學(xué)過程設(shè)計(jì)

一、復(fù)習(xí)

1.請(qǐng)同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各式成立的條件

指出:二次根式的這些基本性質(zhì)都是在一定條件下才成立的,主要應(yīng)用于化簡(jiǎn)二次根式

2.二次根式的乘法及除法的法則是什么?用式子表示出來

指出:二次根式的乘、除法則也是在一定條件下成立的把兩個(gè)二次根式相除,計(jì)算結(jié)果要把分母有理化.

3.在二次根式的化簡(jiǎn)或計(jì)算中,還常用到以下兩個(gè)二次根式的關(guān)系式:

4.在含有二次根式的式子的化簡(jiǎn)及求值等問題中,常運(yùn)用三個(gè)可逆的式子:

二、例題

例1x取什么值時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義:

分析:

(1)題是兩個(gè)二次根式的和,x的取值必須使兩個(gè)二次根式都有意義;

(3)題是兩個(gè)二次根式的和,x的取值必須使兩個(gè)二次根式都有意義;

(4)題的分子是二次根式,分母是含x的單項(xiàng)式,因此x的取值必須使二次根式有意義,同時(shí)使分母的值不等于零

x-2且x0

解因?yàn)閚2-90,9-n20,且n-30,所以n2=9且n3,所以

例3

分析:第一個(gè)二次根式的被開方數(shù)的分子與分母都可以分解因式。把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡(jiǎn),化簡(jiǎn)中應(yīng)注意利用題中的隱含條件3-a0和1-a>0

解因?yàn)?-a>0,3-a0,所以

a<1,|a-2|=2-a.

(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0

這些性質(zhì)化簡(jiǎn)含二次根式的式子時(shí),要注意上述條件,并要闡述清楚是怎樣滿足這些條件的

問:上面的代數(shù)式中的兩個(gè)二次根式的被開方數(shù)的式子如何化為完全平方式?

分析:先把第二個(gè)式子化簡(jiǎn),再把兩個(gè)式子進(jìn)行通分,然后進(jìn)行計(jì)算

注意:

所以在化簡(jiǎn)過程中,

例6

分析:如果把兩個(gè)式子通分,或把每一個(gè)式子的分母有理化再進(jìn)行計(jì)算,這兩種方法的運(yùn)算量都較大,根據(jù)式子的結(jié)構(gòu)特點(diǎn),分別把兩個(gè)式子的分母看作一個(gè)整體,用換元法把式子變形,就可以使運(yùn)算變?yōu)楹?jiǎn)捷。

a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

三、課堂練習(xí)

1.選擇題:

A.a(chǎn)2B.a(chǎn)2

C.a(chǎn)2D.a(chǎn)<2

A.x+2B.-x-2

C.-x+2D.x-2

A.2xB.2a

C.-2xD.-2a

2.填空題:

4.計(jì)算:

四、小結(jié)

1.本節(jié)課復(fù)習(xí)的五個(gè)基本問題是“二次根式”這一章的主要基礎(chǔ)知識(shí),同學(xué)們要深刻理解并牢固掌握。

2.在一次根式的化簡(jiǎn)、計(jì)算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負(fù)數(shù),以確定被開方數(shù)中的字母或式子的取值范圍。

3.運(yùn)用二次根式的四個(gè)基本性質(zhì)進(jìn)行二次根式的運(yùn)算時(shí),一定要注意論述每一個(gè)性質(zhì)中字母的取值范圍的條件。

4.通過例題的討論,要學(xué)會(huì)綜合、靈活運(yùn)用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項(xiàng)式的因式分解,解答有關(guān)含二次根式的式子的化簡(jiǎn)、計(jì)算及求值等問題。

五、作業(yè)

1.x是什么值時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義?

2.把下列各式化成最簡(jiǎn)二次根式:

《二次根式的乘除法》教案設(shè)計(jì) 篇8

一、內(nèi)容和內(nèi)容解析

1.內(nèi)容

二次根式的除法法則及其逆用,最簡(jiǎn)二次根式的概念。

2.內(nèi)容解析

二次根式除法法則及商的算術(shù)平方根的探究,最簡(jiǎn)二次根式的提出,為二次根式的運(yùn)算指明了方向,學(xué)習(xí)了除法法則后,就有比較豐富的運(yùn)算法則和公式依據(jù),將一個(gè)二次根式化成最簡(jiǎn)二次根式,是加減運(yùn)算的基礎(chǔ)

基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):二次根式的除法法則和商的算術(shù)平方根的性質(zhì),最簡(jiǎn)二次根式

二、目標(biāo)和目標(biāo)解析

1.教學(xué)目標(biāo)

(1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);

(2)會(huì)進(jìn)行簡(jiǎn)單的二次根式的除法運(yùn)算;

(3)理解最簡(jiǎn)二次根式的概念

2.目標(biāo)解析

(1)學(xué)生能通過運(yùn)算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;

(2)學(xué)生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對(duì)簡(jiǎn)單的二次根式進(jìn)行運(yùn)算

(3)通過觀察二次根式的運(yùn)算結(jié)果,理解最簡(jiǎn)二次根式的特征,能將二次根式的運(yùn)算結(jié)果化為最簡(jiǎn)二次根式

三、教學(xué)問題診斷分析

本節(jié)內(nèi)容主要是在做二次根式的除法運(yùn)算時(shí),分母含根號(hào)的處理方式上,學(xué)生可能會(huì)出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計(jì)算后利用商的算術(shù)平方根的性質(zhì)來進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號(hào),再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進(jìn)行。根式的除法與分式的運(yùn)算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡(jiǎn)化運(yùn)算。教學(xué)中不能只是列舉題型,應(yīng)以各級(jí)各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過程,估計(jì)運(yùn)算結(jié)果,明確運(yùn)算方向。

本節(jié)課的教學(xué)難點(diǎn)為:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用。

四、教學(xué)過程設(shè)計(jì)

1.復(fù)習(xí)提問,探究規(guī)律

問題1 二次根式的乘法法則是什么內(nèi)容?化簡(jiǎn)二次根式的一般步驟怎樣?

師生活動(dòng) 學(xué)生回答。

【設(shè)計(jì)意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則。

詞條內(nèi)容僅供參考,如果您需要解決具體問題
(尤其在法律、醫(yī)學(xué)等領(lǐng)域),建議您咨詢相關(guān)領(lǐng)域?qū)I(yè)人士。

標(biāo)簽

被開方數(shù)

推薦詞條

主站蜘蛛池模板: 深夜福利视频在线观看 | 欧美精品人 | 3d动漫精品啪啪一区二 | 国产精品视频福利一区二区 | 四虎成人精品国产永 | 免费无码h肉动漫在线观看麻豆 | 亚洲综合国产精品一区二区99 | 亚洲av无码国产综合专区 | 日韩激情毛片一级久久久 | 日韩欧美一级三级黄色片 | 国产激情自拍亚洲精品国产精品精 | 日韩精品亚洲成人在线中文字幕 | 人妻av无码中文专区久久 | 狠狠色噜噜综合91久久久洲欧美一级精品 | 69成人免费视频无码专区 | 五月激激激综合无码 | 国产精品福利电影一区二区三区四区欧 | 97精品无码永久在线 | 91视频网站大全 | 欧美一区二区三区在线直播 | 少妇性饥渴无码a区免费 | 中文字幕第5页 | 在线精品一区二区三区 | 国产中文在线精品亚洲二区 | 亚洲国产日韩精品欧美影院 | 中文字幕无码a片久久东京热喷水 | 成人午夜久久青苹果影院 | 免费无码专区毛片高潮喷水 | a毛片毛片看免费 | 麻豆国产在线观 | 亚洲无码视频一区二区三区 | 欧美黑人又粗又大又爽 | 亚洲国产精品无码久久 | 人妻精品久久久久中文字幕19 | 欧美激情内射喷水高潮 | 日韩在线视频www色 日韩在线视频播放 | 亚洲精品美女在线观看 | 亚洲av无码国产精品永久一区 | 欧美大成色www永久网站婷 | 日本三级韩国三级香港三级a级 | 欧美精品亚洲精品日韩专区 |