對數運算公式大全(高中對數運算公式大全)
本文目錄一覽:
- 1、
- 2、
- 3、
- 4、
- 5、
對數的運算法則及公式
對數運算法則是一種特殊的運算方法,指積、商、冪、方根的對數的運算法則。具體為兩個正數的積的對數,等于同一底數的這兩個數的對數的和,兩個正數商的對數,等于同一底數的被除數的對數減去除數對數的差。
對數的運算公式:a^(log(a)(N))=a^t。對數公式是數學中的一種常見公式,如果a^x=N(a0,且a≠1),則x叫作以a為底N的對數,記做x=log(a)(N),其中a要寫于log右下。其中a叫作對數的底,N叫作真數 。
基本性質:
1、a^(log(a)(b))=b
2、log(a)(MN)=log(a)(M) + log(a)(N)
3、log(a)(M÷N)=log(a)(M) - log(a)(N)
4、log(a)(M^n)=n * log(a)(M)
5、log(a^n)M=1/n * log(a)(M)
數學公式是人們在研究自然界物與物之間時發現的一些聯系,并通過一定的方式表達出來的一種表達方法。是表征自然界不同事物之數量之間的或等或不等的聯系,它確切地反映了事物內部和外部的關系,是我們從一種事物到達另一種事物的依據,使我們更好地理解事物的本質和內涵。
對數函數的運算公式.
1、a^log(a)(b)=b
2、log(a)(a)=1
3、log(a)(MN)=log(a)(M)+log(a)(N);
4、log(a)(M÷N)=log(a)(M)-log(a)(N);
5、log(a)(M^n)=nlog(a)(M)
6、log(a)[M^(1/n)]=log(a)(M)/n
擴展資料:
一般地,對數函數以冪(真數)為自變量,指數為因變量,底數為常量的函數。
對數函數是6類基本初等函數之一。其中對數的定義:
如果ax=N(a0,且a≠1),那么數x叫做以a為底N的對數,記作x=logaN,讀作以a為底N的對數,其中a叫做對數的底數,N叫做真數。
一般地,函數y=logax(a0,且a≠1)叫做對數函數,也就是說以冪(真數)為自變量,指數為因變量,底數為常量的函數,叫對數函數。
其中x是自變量,函數的定義域是(0,+∞),即x0。它實際上就是指數函數的反函數,可表示為x=ay。因此指數函數里對于a的規定,同樣適用于對數函數。
有理和無理指數
如果??是正整數,??表示等于??的??個因子的加減:
但是,如果是??不等于1的正實數,這個定義可以擴展到在一個域中的任何實數??(參見冪)。類似的,對數函數可以定義于任何正實數。對于不等于1的每個正底數??,有一個對數函數和一個指數函數,它們互為反函數。
對數可以簡化乘法運算為加法,除法為減法,冪運算為乘法,根運算為除法。所以,在發明電子計算機之前,對數對進行冗長的數值運算是很有用的,它們廣泛的用于天文、工程、航海和測繪等領域中。它們有重要的數學性質而在今天仍在廣泛使用中。
復對數
復對數計算公式
復數的自然對數,實部等于復數的模的自然對數,虛部等于復數的輻角。
對數函數的十個計算公式有哪些?
當a0且a≠1時,M0,N0,那么:
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M) (n∈R)
(4)換底公式:log(A)M=log(b)M/log(b)A (b0且b≠1)
(5) a^(log(b)n)=n^(log(b)a) 證明:
設a=n^x 則a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)
(6)對數恒等式:a^log(a)N=N;
log(a)a^b=b
(7)由冪的對數的運算性質可得(推導公式)
1.log(a)M^(1/n)=(1/n)log(a)M , log(a)M^(-1/n)=(-1/n)log(a)M
2.log(a)M^(m/n)=(m/n)log(a)M , log(a)M^(-m/n)=(-m/n)log(a)M
3.log(a^n)M^n=log(a)M , log(a^n)M^m=(m/n)log(a)M
4.log(以 n次根號下的a 為底)(以 n次根號下的M 為真數)=log(a)M ,
log(以 n次根號下的a 為底)(以 m次根號下的M 為真數)=(m/n)log(a)M
5.log(a)b×log(b)c×log(c)a=1
對數與指數之間的關系:當a0且a≠1時,a^x=N x=㏒(a)N
擴展資料:
兩句經典話:底真同對數正,底真異對數負。解釋如下:
也就是說:若y=logab (其中a0,a≠1,b0)
當0a1, 0b1時,y=logab0;
當a1, b1時,y=logab0;
當0a1, b1時,y=logab0;
當a1, 0b1時,y=logab0。
對數運算的公式是什么?
對數運算10個公式如下:
1、lnx+lny=lnxy。
2、lnx-lny=ln(x/y)。
3、Inxn=nlnx。
4、In(n√x)=lnx/n。
5、lne=1。
6、In1=0。
7、Iog(A*B*C)=logA+logB+logC;logA'n=nlogA。
8、logaY =logbY/logbA。
9、log(a)(MN)=log(a)(M)+log(a)(N)。
10、Iog(A)M=log(b)M/log(b)A(b0)。
對數函數的運算公式
當a0且a≠1時,M0,N0,那么:
(1)log(a)(MN)=log(a)(M)+log(a)(N)。
(2)log(a)(M/N)=log(a)(M)-log(a)(N)。
(3)log(a)(M^n)=nlog(a)(M)(n∈R)。
(4)log(a^n)(M)=(1/n)log(a)(M)(n∈R)。
(5)換底公式:log(A)M=log(b)M/log(b)A (b0且b≠1)。
(6)a^(log(b)n)=n^(log(b)a)。
(7)對數恒等式:a^log(a)N=N。
對數運算10個公式是什么?
對數運算10個公式如下:
1、lnx+lny=lnxy。
2、lnx-lny=ln(x/y)。
3、Inxn=nlnx。
4、In(n√x)=lnx/n。
5、lne=1。
6、In1=0。
7、Iog(A*B*C)=logA+logB+logC;logA'n=nlogA。
8、logaY =logbY/logbA。
9、log(a)(MN)=log(a)(M)+log(a)(N)。
10、Iog(A)M=log(b)M/log(b)A(b0Eb#1)。
對數介紹
在數學中,對數是對求冪的逆運算,正如除法是乘法的倒數,反之亦然。這意味著一個數字的對數是必須產生另一個固定數字(基數)的指數。
在簡單的情況下,乘數中的對數計數因子。更一般來說,乘冪允許將任何正實數提高到任何實際功率,總是產生正的結果,因此可以對于b不等于1的任何兩個正實數b和x計算對數。
詞條內容僅供參考,如果您需要解決具體問題
(尤其在法律、醫學等領域),建議您咨詢相關領域專業人士。